第一篇:怎么证明余弦定理
怎么证明余弦定理
证明余弦定理:
因为过c作cd垂直于ab,ad=bcosa;所以(c-bcosa)^2+(bsina)^2=a^2。
又因为b^2-(bcosa)^2=(bsina)^2,所以(c-x)^2+b^2-(bcosa)^2=a^2,
所以c^2-2cbcosa+(bcosa)^2+b^2-(bcosa)^2=a^2,
所以c^2-2cbcosa+b^2=a^2,
所以c^2+b^2-a^2=2cbcosa,
所以cosa=(c^2+b^2-a^2)/2bc
同理cosb=(a^2+c^2-b^2)/2ac,cosc=(a^2+b^2-c^2)/2ab
2
在任意△abc中,作ad⊥bc.
∠c对边为c,∠b对边为b,∠a对边为a-->
bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
勾股定理可知:
ac²=ad²+dc²
b²=(sinb*c)²+(a-cosb*c)²
b²=sin²b*c²+a²+cos²b*c²-2ac*cosb
b²=(sin²b+cos²b)*c²-2ac*cosb+a²
b²=c²+a²-2ac*cosb
所以,cosb=(c²+a²-b²)/2ac
2 ……此处隐藏2654个字……a)∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3△abc的三边分别为a,b,c,边bc,ca,ab上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
4
ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。