在△abc中,设bc=a,ac=b,ab=c,试根据b,c,a来表示a。 分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作cd垂直于ab于d,那么在rt△bdc中,边a可利用勾股定理用cd、db表示,而cd可在rt△adc中利用边角关系表示,db可利用ab-ad转化为ad,进而在rt△adc内求解。
解:过c作cd⊥ab,垂足为d,则在rt△cdb中,根据勾股定理可得: a2=cd2+bd2
∵在rt△adc中,cd2=b2-ad2
又∵bd2=(c-ad)2=c2-2c·ad+ad2
∴a2=b2-ad2+c2-2c·ad+ad2=b2+c2
-2c·ad 又∵在rt△adc中,ad=b·cosa ∴a2=b2+c2-2bccosa类似地可以证明b2=a2+c2-2accosb,c2=a2+b2-2abcosc
第二篇:余弦定理证明余弦定理证明
在任意△abc中,作ad⊥bc.
∠c对边为c,∠b对边为b,∠a对边为a-->
bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
勾股定理可知:
ac²=ad²+dc²
b²=(sinb*c)²+(a-cosb*c)²
b²=sin²b*c²+a²+c ……此处隐藏1821个字……,sinα)p3(cos(α+β),sin(α+β)),p4(cos(-β),sin(-β))
由p1p3=p2p4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ.????????4分
②由①易得cos(
sin(α+β)=cos[
=cos(-α)=sinα,sin(-(α+β)]=cos[(-α)=cosα -α)+(-β)] -α)cos(-β)-sin(-α)sin(-β)
=sinαcosβ+cosαsinβ??????????????6分
(2)由题意,设△abc的角b、c的对边分别为b、c
则s=bcsina=
=bccosa=3>0
∴a∈(0,
2 ),cosa=3sina 2又sina+cosa=1,∴sina=,cosa=
由题意,cosb=,得sinb
=
∴cos(a+b)=cosacosb-sinasinb= 故cosc=cos[π-(a+b)]=-cos(a+b)=-
【题4】(2014年陕西) ??????????12分
向你推荐相关范文:余弦定理证明案例分析
正弦定理与余弦定理的证明
余弦定理及其证明
余弦定理的多种证明
余弦定理的三种证明