首页 > 实用范文

余弦定理证明(精选多篇)

时间:2023-03-24 00:11:41
余弦定理证明(精选多篇)(全文共1295字)

在△abc中,设bc=a,ac=b,ab=c,试根据b,c,a来表示a。 分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作cd垂直于ab于d,那么在rt△bdc中,边a可利用勾股定理用cd、db表示,而cd可在rt△adc中利用边角关系表示,db可利用ab-ad转化为ad,进而在rt△adc内求解。

解:过c作cd⊥ab,垂足为d,则在rt△cdb中,根据勾股定理可得: a2=cd2+bd2

∵在rt△adc中,cd2=b2-ad2

又∵bd2=(c-ad)2=c2-2c·ad+ad2

∴a2=b2-ad2+c2-2c·ad+ad2=b2+c2

-2c·ad 又∵在rt△adc中,ad=b·cosa ∴a2=b2+c2-2bccosa类似地可以证明b2=a2+c2-2accosb,c2=a2+b2-2abcosc

第二篇:余弦定理证明

余弦定理证明

在任意△abc中,作ad⊥bc.

∠c对边为c,∠b对边为b,∠a对边为a-->

bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c

勾股定理可知:

ac²=ad²+dc²

b²=(sinb*c)²+(a-cosb*c)²

b²=sin²b*c²+a²+c ……此处隐藏1821个字……,sinα)p3(cos(α+β),sin(α+β)),p4(cos(-β),sin(-β))

由p1p3=p2p4及两点间的距离公式,得

[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2

展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)

∴cos(α+β)=cosαcosβ-sinαsinβ.????????4分

②由①易得cos(

sin(α+β)=cos[

=cos(-α)=sinα,sin(-(α+β)]=cos[(-α)=cosα -α)+(-β)] -α)cos(-β)-sin(-α)sin(-β)

=sinαcosβ+cosαsinβ??????????????6分

(2)由题意,设△abc的角b、c的对边分别为b、c

则s=bcsina=

=bccosa=3>0

∴a∈(0,

2 ),cosa=3sina 2又sina+cosa=1,∴sina=,cosa=

由题意,cosb=,得sinb

∴cos(a+b)=cosacosb-sinasinb= 故cosc=cos[π-(a+b)]=-cos(a+b)=-

【题4】(2014年陕西) ??????????12分

向你推荐相关范文:

余弦定理证明案例分析

正弦定理与余弦定理的证明

余弦定理及其证明

余弦定理的多种证明

余弦定理的三种证明

《余弦定理证明(精选多篇)(全文共1295字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式