首页 > 实用范文

勾股定理的证明方法(精选多篇)

时间:2023-03-24 00:11:44
勾股定理的证明方法(精选多篇)(全文共3894字)

第一篇:勾股定理的证明方法

勾股定理的证明方法

绪论

勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。

第一节 勾股定理的基本内容

文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。 数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2 事实上,它是余弦定理之一种特殊形式。

第二节勾股定理的证明

2.1欧洲

在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。

欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。

毕达哥拉斯的证明方法(相传):

一说采用拼图法,一说采用定理法。

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像左图那样拼成两个正方形。

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。

a2+b2+4×1/2ab = c2+4×1/2ab ,整理即可得到。

……此处隐藏3375个字……>

勾股定理的别名

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.

前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。

证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(elishascottloomis)的pythagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

《勾股定理的证明方法(精选多篇)(全文共3894字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式