第一篇:函数极限的证明
函数极限的证明
(一)时函数的极限:
以时和为例引入.
介绍符号:的意义,的直观意义.
定义(和.)
几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.
例1验证例2验证例3验证证……
(二)时函数的极限:
由考虑时的极限引入.
定义函数极限的“”定义.
几何意义.
用定义验证函数极限的基本思路.
例4验证例5验证例6验证证由=
为使需有为使需有于是,倘限制,就有
例7验证例8验证(类似有(三)单侧极限:
1.定义:单侧极限的定义及记法.
几何意义:介绍半邻域然后介绍等的几何意义.
例9验证证考虑使的2.单侧极限与双侧极限的关系:
th类似有:例10证明:极限不存在.
例11设函数在点的某邻域内单调.若存在,则有
=§2函数极限的性质(3学时)
教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:
我们引进了六种极限:,.以下以极限为例讨论性质.均给出证 ……此处隐藏2502个字……存在并且相等.
证明 先证明必要性. 设f(x)?a(x?x0), 则??>0, ???0, 使当0<|x?x0|<? 时, 有
|f(x)?a|<? .
因此当x0??<x<x0和x0<x<x0?? 时都有
|f(x)?a|<? .
这说明f(x)当x?x0时左右极限都存在并且都等于a .再证明充分性. 设f(x0?0)?f(x0?0)?a, 则??>0,??1>0, 使当x0??1<x<x0时, 有| f(x)?a<? ;??2>0, 使当x0<x<x0+?2时, 有| f(x)?a|<? .
取??min{?1, ?2}, 则当0<|x?x0|<? 时, 有x0??1<x<x0及x0<x<x0+?2 , 从而有
| f(x)?a|<? ,
即f(x)?a(x?x0).
9. 试给出x??时函数极限的局部有界性的定理, 并加以证明.
解 x??时函数极限的局部有界性的定理? 如果f(x)当x??时的极限存在? 则存在x?0及m?0? 使当|x|?x时? |f(x)|?m?
证明 设f(x)?a(x??)? 则对于? ?1? ?x?0? 当|x|?x时? 有|f(x)?a|?? ?1? 所以|f(x)|?|f(x)?a?a|?|f(x)?a|?|a|?1?|a|?
这就是说存在x?0及m?0? 使当|x|?x时? |f(x)|?m? 其中m?1?|a|?